Induction of D-xylose uptake and expression of NAD(P)H-linked xylose reductase and NADP + -linked xylitol dehydrogenase in the oleaginous microalga Chlorella sorokiniana

نویسندگان

  • Yubin Zheng
  • Xiaochen Yu
  • Tingting Li
  • Xiaochao Xiong
  • Shulin Chen
چکیده

BACKGROUND The heterotrophic and mixotrophic culture of oleaginous microalgae is a promising process to produce biofuel feedstock due to the advantage of fast growth. Various organic carbons have been explored for this application. However, despite being one of the most abundant and economical sugar resources in nature, D-xylose has never been demonstrated as a carbon source for wild-type microalgae. The purpose of the present work was to identify the feasibility of D-xylose utilization by the oleaginous microalga Chlorella sorokiniana. RESULTS The sugar uptake kinetic analysis was performed with (14)C-labeled sugars and the data showed that the D-glucose induced algal cells (the alga was heterotrophically grown on D-glucose and then harvested as D-glucose induced cells) exhibited a remarkably increased D-xylose uptake rate. The maximum D-xylose transport rate was 3.8 nmol min(-1) mg(-1) dry cell weight (DCW) with K m value of 6.8 mM. D-xylose uptake was suppressed in the presence of D-glucose, D-galactose and D-fructose but not L-arabinose and D-ribose. The uptake of D-xylose activated the related metabolic pathway, and the activities of a NAD(P)H-linked xylose reductase (XR) and a unique NADP(+)-linked xylitol dehydrogenase (XDH) were detected in C. sorokiniana. Compared with the culture in the dark, the consumption of D-xylose increased 2 fold under light but decreased to the same level with addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), indicating that extra chemical energy from the light-dependent reaction contributed the catabolism of D-xylose for C. sorokiniana. CONCLUSIONS An inducible D-xylose transportation system and a related metabolic pathway were discovered for microalga for the first time. The transportation of D-xylose across the cell membrane of C. sorokiniana could be realized by an inducible hexose symporter. The uptake of D-xylose subsequently activated the expression of key catalytic enzymes that enabled D-xylose entering central metabolism. Results of this research are useful to better understand the D-xylose metabolic pathway in the microalga C. sorokiniana and provide a target for genetic engineering to improve D-xylose utilization for microalgal lipid production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering for improved fermentation of pentoses by yeasts

The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) red...

متن کامل

Temperature sensitivity of the induction of xylose reductase in Pachysolen tannophilus.

Pachysolen tannophilils is a yeast capable of fermenting xylose to ethanol. I,Z This organism is of interest due to its potential for converting the xylose found in agricultural and forestry residues to ethanol. Hemicellulosic sugars (i.e., xylose) are relatively abundant in certain plant residues and can be isolated with relative ease (for review, see ref. 3). The assumed pathway of xylose uti...

متن کامل

Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.

The xylose-fermenting recombinant Saccharomyces cerevisiae and its improvement have been studied extensively. The redox balance between xylose reductase (XR) and xylitol dehydrogenase (XDH) is thought to be an important factor in effective xylose fermentation. Using protein engineering, we previously successfully reduced xylitol accumulation and improved ethanol production by reversing the depe...

متن کامل

Xylitol Formation and Key Enzyme Activities in Candida boidinii under Different Oxygen Transfer Rates

Under oxygen transfer rates (OTR), from 10 to 30 mmol. l –1 h , Candida boidinii NRRL Y-17213 exhibited both NADH and NADPH linked D-xylose reductase activities with the former being higher. Xylitol dehydrogenase was mainly NAD dependent. Maximum xylitol production was attained at OTR of 14 mmol. l h . Ethanol, glycerol and ribitol were also produced. A correlation between xylitol accumulation,...

متن کامل

Oxidation and reduction of D-xylose by cell-free extract of Pichia quercuum.

The fermentation mechanism of the simultaneous production of D-xylonic acid and xylitol from D-xylose by Pichia quercuum was studied by using a cell-free enzyme preparation. Nicotinamide adenine dinucleotide phosphate (NADP)-dependent D-xylose dehydrogenase activity and NADP-dependent D-xylose reductase activity were detected, and the oxido-reduction reaction of D-xylose was able to couple thro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014